
On-Policy Maximum Entropy Deep Reinforcement Learning

1 Introduction

Model-free deep reinforcement learning (RL) algorithms have succeeded in a variety of tasks, including games
[MKS+13], robotics [SLA+15], and traffic control [TPSS19]. These algorithms have been successful in such complex
domains due to their application of high-capacity function approximators. These algorithms fall into two fami-
lies: on-policy algorithms (e.g. TRPO [SLA+15], PPO [SWD+17], A3C [MBM+16]) and off-policy algorithms (e.g.
Q-Learning based methods [MKS+15], DDPG [LHP+15]). Whereas off-policy algorithms may reuse previous ex-
periences, on-policy algorithms require new samples to be collected for each gradient step. However, despite the
increased sample complexity, on-policy algorithms have become the tool-of-choice for many continuous control
problems. Indeed, PPO was shown to outperform Rainbow [HMVH+18], a combination of Q-learning approaches,
in most of the levels in the ProcGen benchmark (including the FruitBot level) [CHHS20]. Although successful in
these domains, deep RL algorithms can be difficult to train due to stability and convergence issues [MSB+09]. This
problem is exacerbated in certain environments, such as those with sparse rewards [TZXS19].

One popular approach to combat this problem is to encourage agents to seek policies have high entropy. Intuitively,
by optimizing for policies that have higher entropy, the agent’s actions will tend not to spiral into a purely exploita-
tive or deterministic pattern. This observation lead to the ad-hoc addition of “entropy regularization” terms to the
objectives of state-of-the-art deep RL agents [MBM+16, SLA+15, SWD+17]. However, further theoretical analysis
into the effectiveness of these heuristic regularizers led to a richer theory maximum entropy reinforcement learning
that gives a probabilistic graphical model interpretation for the reinforcement learning problem [Lev18]. From this
interpretation, a more principled approach to introducing entropy into reinforcement learning may be derived: the
maximum entropy objective. The exact difference between entropy regularization and the maximum entropy ob-
jective is nuanced – we describe this in more detail in the next section. Although entropy regularization is common
in on-policy algorithms such as PPO, the more principled maximum-entropy objective has only been well-studied
in off-policy algorithms [HTAL17, HZAL18, SSW19]. We aim to improve the performance of the PPO algorithm
by replacing entropy regularization with a maximum entropy objective. We consider training and test reward, in
addition to the speed of training convergence, as metrics of agent performance, and find that entropy maximization
achieves superior performance in all three categories with fewer time steps and less training data.

2 Related Work: Maximum Entropy vs Entropy Regularization

Maximum Entropy Objectives. In maximum entropy reinforcement learning [ZMBD08, RTV12], the agent aims to
optimize the expected reward in addition to the expected entropy of the policy. Formally, given a horizon T, we
seek to maximize the objective

T

∑
t=1

E [r(st, at)]︸ ︷︷ ︸
Expected reward

+β E [− log π(at | st)]︸ ︷︷ ︸
Policy entropy

where r denotes the reward function and π the policy. The parameter β is used to calibrate the entropy term,
and it is often tuned or annealed in practice. This augmentation of the reward makes policies more robust to
model and estimation errors, and further increases the propensity for agents to acquire more diverse behaviors
[HTAL17]. Further, the maximum entropy objective may be derived in a principled way from an interpretation of
reinforcement learning as probablistic inference [Lev18]. In this interpretation, states are deemed “optimal” with
probability exponential in the reward signal, and the agent aims to maximize the probability of landing in these
states. Such probabilistic optimization leads to “soft” versions of classical Bellman value and Q-functions

V(st) = log
∫
A

exp (Q(st, at)) dat ≈ max
at

Q(st, at)

This insight has led to “soft” analogues of standard off-policy deep reinforcement learning algorithms, including
Soft Q-Learning [HTAL17], Soft Actor-Critic [HZAL18], and Soft DDPG [SSW19]. To the best of our knowledge,
we are not aware of any similar principled maximum entropy analogues of on-policy algorithms (including PPO).
These algorithms instead tend to use entropy regularization, a technique we describe below.

Entropy Regularization. Another method of encouraging agents to seek high entropy policies is a heuristic ap-
proach known as entropy regularization, and is standard in state-of-the-art on-policy algorithms [MBM+16, SWD+17,

OMKM16]. This regularization takes place either by explicitly adding an entropy term to the policy gradient,

θ− θold ∝ Es,a [Qπ(s, a)∇θ log π(s, a)] + β Es [∇θEa [− log π(a | s)]]︸ ︷︷ ︸
Entropy bonus

such as in [OMKM16], or by adding an entropy term to the loss function as in the PPO algorithm [SWD+17] (we
describe this latter form of regularization in the next section).

Although entropy regularization has a similar effect to the use of a maximum entropy objective, the two approaches
are not equivalent. The following explanation, due to Levine, makes this distinction more clear:

“Entropy regularization is not, in general, equivalent to the maximum entropy objective, which not only
optimizes for a policy with maximum entropy, but also optimizes the policy itself to visit states where
it has high entropy. Put another way, the maximum entropy objective optimizes the expectation of the
entropy with respect to the policy’s state distribution, while entropy regularization only optimizes the
policy entropy at the states that are visited, without actually trying to modify the policy itself to visit
high entropy states.” ([Lev18], Section 5.2)

3 Background: Deriving the Maximum Entropy PPO Objective

In this section, we introduce the PPO-clipped objective function that we use as a baseline for our experiments, and
we derive a novel modification to the objective for a maximum entropy agent. We consider an actor and critic with
shared parameters θ.

The PPO Objective. In the PPO algorithm, the total objective (actor objective + critic objective) is regularized by an
entropy bonus term:

LREG
t (θ) = Êt

[
min

(
πθ(at | st)

πθold(at | st)
Ât, clip

(
πθ(at | st)

πθold(at | st)
, 1− ε, 1 + ε

)
Ât

)]
︸ ︷︷ ︸

PPO-Clip objective

− α Êt

[(
Vθ(st)− R̂t

)2
]

︸ ︷︷ ︸
Value Function loss

+ β Êt

[
Ea∼πθ(a|st) [− log πθ(a | st)]

]
︸ ︷︷ ︸

Entropy bonus

Here, Êt denotes an empirical expectation over a minibatch of examples, Ât denotes the λ-generalized advantage
estimate,

Ât =
T−1

∑
i=t

(γλ)i−t (r(si, ai) + γVθold(si+1)−Vθold(si))

and R̂t = Ât +Vθold(st) denotes the (discounted) return estimate. Each training iteration, the objective is maximized
with gradient descent. New sample trajectories must be regularly collected as this is an on-policy algorithm.

A Maximum-Entropy Implementation. We make the following novel modification to the PPO loss function that
corresponds to a proper maximum entropy objective

LMAX
t (θ) =Êt

[
min

(
πθ(at | st)

πθold(at | st)
Ât(β), clip

(
πθ(at | st)

πθold(at | st)
, 1− ε, 1 + ε

)
Ât(β)

)]
− αÊt

[(
Vθ(st)− R̂t(β)

)2
]

where we modify the advantage estimate Ât(β) and the estimated return R̂t(β) = Ât(β) + Vθold(st) to incorporate
the entropy term

Ât(β) =
T−1

∑
i=t

(γλ)i−t

r(si, ai) + βEa∼πθ(a|si)
[− log πθ(a | si)]︸ ︷︷ ︸

Maximum entropy objective

+γVθold(si+1)−Vθold(si)

4 Methods/Approach: Handling Complexity

Modifying off-policy algorithms to consider maximum entropy objectives is highly tractable: one need only subtract
log π(a | s) from the reward of the current timestep. Unfortunately, for on-policy methods like PPO that make use
of advantage estimates, this process becomes far more complex. Observe that our modified expressions for the
advantage and reward estimates Ât(β) and R̂t(β) make use of the model parameters θ. Thus, in the backward pass
of our modified objective LMAX

t , gradients have to flow through these estimates – each of which is a sum of O(T)
terms. In practice, this is highly intractable: when we attempted to implement this, runtime increased from 20-40
minutes to 13-20 hours and GPU usage from 2 GB to 8 GB. To make this more tractable, we used the following (one-
step) approximation for the advantage estimate, which requires only one gradient computation in the backward
pass:

Ât(β) =
T−1

∑
i=t

(γλ)i−t
(

r(si, ai) + βEa∼πθ(a|si)
[− log πθ(a | si)] + γVθold(si+1)−Vθold(si)

)
≈ r(st, at) + βEa∼πθ(a|st) [− log πθ(a | st)] + γVθold(st+1)−Vθold(st)︸ ︷︷ ︸

First step advantage estimate with entropy

+ (γλ)Ât+1(0)︸ ︷︷ ︸
Unaltered advantage estimate

(3, 16)
Residual Block

(16, 32)
Residual Block

(32, 32)
Residual Block

256
Linear Layer

15
Linear Layer

1
Linear Layer

V(s)

π(a|s)

Figure 1: Model architecture. We used the
IMPALA [ESM+18] architecture to learn an
actor and critic that use shared features.

Using the equation R̂t(β) = Ât(β) + Vθold(st), this approximation
gives a one-step approximation for the returns as well. We empha-
size that we are not aware of any instances of our modified objec-
tive LMAX

t in the literature. As such, this one-step approximation is
also of our own design. Our approximation is, however, motivated
by similar one-step approximations in the policy gradient entropy
regularization literature (see e.g. Section 6.1 of [SCA18]). To imple-
ment our approach, we modified the OpenAI baseline implementa-
tion of PPO [DHK+17], using IMPALA [ESM+18] to learn an actor
and critic with shared image features. Figure 1 gives a graphical
depiction of our architecture. We compare the original entropy-
regularized LREG

t objective with the one-step approximation to our
LMAX

t objective.

5 Experimental Design and Results

Figure 2: Training rewards for selected tuning
runs of the regularization parameter (left) and max-
imization parameter (right) All runs were con-
ducted with 100 training levels for 2000000 steps on
hard_mode, to provide for greater differentiation.

We train three types of agents on the FruitBot level in easy_mode

on {50, 100, 250, 500} training levels. The first agent is trained us-
ing the PPO algorithm with no entropy augmentations. The second
is trained with entropy regularization, using the LREG

t objective as
given in [SWD+17, CHHS20]. The third agent uses the PPO algo-
rithm under our one-step approximation of our maximum entropy
objective LMAX

t . The extent to which the entropy affects the objec-
tive for the latter two agents is controlled by a temperature coeffi-
cient, which can be further adjusted using an exponential anneal-
ing parameter. We tune each agent’s temperature, keeping other
parameters as in [CHHS20], then benchmark their performance
across training and additional unseen levels.

We evaluated our agents based on three primary factors: the speed of convergence, the reward at convergence, and
the entropy achieved by each agent’s learned policy. These three metrics formed the core of our decision-making
process and guided our experimentation forward. We evaluated the speed of convergence based on graphs of
training reward for each agent, considering the number of training steps it took before each crossed certain mean
reward thresholds on previously seen levels. The converged reward for each agent, conversely, was evaluated
based on performance on unseen levels after training had been completed. This allowed us to understand whether
our agents were overfitting to their known distributions at the expense of generalization, which we hoped entropy
maximization would help prevent. Finally, we created graphs of the average policy entropy for each agent over the
course of training, which helped us visualize whether we were achieving our goal of learning a diverse distribution
over actions.

Tuning runs were performed using a logarithmic grid search across entropy parameters between 0.0001 and 1, with
different runs roughly a factor of 3 apart. Agents were trained for each entropy parameter and method on the
same settings and seed. The best performing orders of magnitude were then further explored, with finer-grained
search and the addition of annealing parameters. The results for tuning on both one-step entropy maximization
and entropy regularization are shown in Figure 2. The optimal tuned entropy values were 0.01 and 0.3 for entropy
regularization and one-step entropy maximization, respectively. All further comparison runs were performed with
these optimal entropy coefficients, to provide a fair perspective on the best performance of each method.

Figure 3: Training rewards for a PPO agent with no entropy regularization/maximum entropy objective (in blue), entropy reg-
ularization (in orange), and our maximum entropy objective (in green) with identical seeds and entropy temperature parameters
set to the optimal value as determined above.

The plots in Figure 3 show the reward during training for each agent; notice that our entropy maximization agent
tends to reach higher levels of performance across all four level counts significantly earlier in the training process
than either of the other agents. Crucially, this is also reflected when these models are tested on unseen data (Figure
4). At timestep 1,000,000 (halfway through training), our agent achieved higher test rewards than the previous
models, which demonstrates that our model was not simply overfitting to achieve the observed results.

Figure 4: Test results for our models at 1 million
timesteps (far left) and 2 million timesteps (center).
These figures were generated using models trained
on the first 500 levels in easy_mode, and tested on
levels 500 through 1000 of ProcGen FruitBot. No-
tably, our agent achieves test rewards of around 20
far earlier than either alternative.

Figure 5: Policy entropy over time
for selected training runs (250 levels)
showing clear differentiation in en-
tropy levels across training methods.

Interestingly, Figure 5 shows that the entropy maximization agent actually had
lower policy entropy over time. This drop in entropy occurs roughly at the
same time when the agent experiences a spike in training reward. This indi-
cates that the entropy maximizing agent was able to quickly identify certain
behaviors that increased the scale of the reward signal, and correspondingly
adopted a more deterministic policy that exploits these behaviors. We also ex-
perimented with a combined agent that uses entropy regularization in addition
to a maximum entropy objective. This agent (shown in red) performs poorly,
and seems to only maximize entropy. It is likely that this poor performance is
due in part to difficulties in hyperparameter tuning, as the interaction of these
two terms is far more complicated and difficult to optimize than either alone.

6 Conclusion

In this paper, we modified the PPO-Clipped objective to tractably approximate a maximum entropy objective. Our
experimental results indicate that PPO under this modified objective yielded better performing and more robust
results in fewer timesteps and using less training data, when compared to the state-of-the-art entropy-regularized
objective. We see our results as a nuanced confirmation of the well-known success of entropy augmentations to
reinforcement learning objectives. Current state-of-the-art on-policy and off-policy algorithms use entropy in some
fashion. Our results demonstrate that not all entropy augmentations are equal – the more principled maximum en-
tropy approach is superior to heuristic entropy regularization approaches in practice. Further, our one-step approx-
imation to the maximum entropy objective is as easy and tractable to implement as the existing entropy-regularized
objective. Thus, we believe that our approach motivates the further use of proper entropy maximization, and can
be used to improve the performance of other popular on-policy algorithms (e.g. TRPO, A3C).

7 Contributions

Naveen (Related Work, Derivations, Research Direction): 33%; Will (Experimental Design, Tuning, Logging): 33%;
Kamyar (Code, Environment Setup, Methods/Approach): 33%; CS 182 Overlords 1%

References

[CHHS20] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pages 2048–2056.
PMLR, 2020.

[DHK+17] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https://github.
com/openai/baselines, 2017.

[ESM+18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA: Scalable
distributed deep-RL with importance weighted actor-learner architectures. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1407–1416. PMLR, 10–15 Jul 2018.

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[HTAL17] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In International Conference on Machine Learning, pages 1352–1361. PMLR, 2017.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In International Conference on Ma-
chine Learning, pages 1861–1870. PMLR, 2018.

[Lev18] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[MSB+09] Hamid Reza Maei, Csaba Szepesvari, Shalabh Bhatnagar, Doina Precup, David Silver, and Richard S
Sutton. Convergent temporal-difference learning with arbitrary smooth function approximation. In
NIPS, pages 1204–1212, 2009.

[OMKM16] Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy
gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

[RTV12] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforce-
ment learning by approximate inference. Proceedings of Robotics: Science and Systems VIII, 2012.

[SCA18] John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft q-
learning, 2018.

https://github.com/openai/baselines
https://github.com/openai/baselines

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.

[SSW19] Wenjie Shi, Shiji Song, and Cheng Wu. Soft policy gradient method for maximum entropy deep
reinforcement learning. arXiv preprint arXiv:1909.03198, 2019.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[TPSS19] Kai Liang Tan, Subhadipto Poddar, Soumik Sarkar, and Anuj Sharma. Deep reinforcement learning
for adaptive traffic signal control. In Dynamic Systems and Control Conference, volume 59162, page
V003T18A006. American Society of Mechanical Engineers, 2019.

[TZXS19] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping your distance: Solving
sparse reward tasks using self-balancing shaped rewards. arXiv preprint arXiv:1911.01417, 2019.

[ZMBD08] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. 2008.

	Introduction
	Related Work: Maximum Entropy vs Entropy Regularization
	Background: Deriving the Maximum Entropy PPO Objective
	Methods/Approach: Handling Complexity
	Experimental Design and Results
	Conclusion
	Contributions

