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Abstract

Despite the increased popularity of stochastic gradient methods for large-scale
machine learning, until recently, these approaches were largely understudied in
the theoretical setting. Although stochastic gradient methods have much lower
iteration complexity compared to their deterministic full gradient counterparts,
their high variance gradient estimates can hinder convergence. As a consequence,
several variance reduction methods have been proposed, often injecting bias into
the gradient estimates in order to reduce gradient variance and yield better conver-
gence rates. Unlike deterministic gradient descent, the concept of acceleration or
momentum in the stochastic setting has been poorly understood from a theoretical
perspective. Recently, it has been shown that stochastic gradient methods can
achieve provably optimal convergence by utilizing both variance reduction and an
adapted momentum term.

1 Introduction

In the paradigm of large-scale machine learning, calculating the Hessian or higher level derivatives
for a given function defined over a high-dimensional domain can be computationally expensive.
Although limited memory quasi-newton methods such as L-BFGS Liu and Nocedal (1989) and
non-linear conjugate gradient methods such as Fletcher-Reeves Fletcher and Reeves (1964) can
eliminate the need to calculate the Hessian, the computational complexity of such methods remains
high where computations over a large dataset can be prohibitively slow. Nocedal and Wright (2006)

While some work has shown that on smaller datasets conjugate gradient methods and quasi-newton
methods can yield better convergence rates, for larger datasets (such as ImageNet with over 14
million images) runtime complexity remains an issue Le et al. (2011). Overall, the time complexity
dependence on the dataset size n fordeterministic methods has caused the machine learning commu-
nity to utilize stochastic gradient methods wherein a single or few example(s) are utilized estimate
the gradient. Although in deterministic gradient descent an optimal convergence rate of 1

t2 can be
achieved by Nesterov Acceleration E. (1983), the theory for the convergence and acceleration of
stochastic gradient methods is considerably less well understood.

In this review, we will explore the limitations of stochastic gradient methods and the proposed
solutions. We will begin by introducing the formulation of stochastic gradient descent and its
convergence guarantees. We will then proceed to describe how gradient estimate variance can
negatively impact method convergence and introduce approaches that address this issue to yield better
convergence guarantees. Finally, we discuss the use of momentum for stochastic gradient methods.

2 Stochastic Gradient Descent

Consider the following convex optimization problem

min
x∈Rd

F(x) =
1
n

n

∑
i=1

fi(x). (1)



We define each fi as being a smooth, convex function.
In stochastic gradient descent Bottou (2010), the update rule is defined as

xk+1 ←− xk − ηgk

where η is the step size or learning rate and gk is an estimator for the gradient.

Typically, an index i is sampled uniformly at random from [1, n] and gk = ∇ fi(xk). In particular,
the function F can represent the average loss over a set of data points with ∇ fi(xk) representing the
gradient of the loss at the i-th data point. In this scheme, our estimator is unbiased, E[gk] = ∇ f (xk).

We will now consider several convergence results for stochastic gradient descent.
Theorem 1. Let fi be smooth, convex, and Lipschitz defined over the domain X such that
supx∈X E[∥g(x)∥2] ≤ σ2.

1. Let x̄ = 1
T+1 ∑T

k=0 xk with a fixed η > 0. Then after T steps, we obtain a bound on the
expected suboptimality

E[ f (x̄)]− f ∗ ≤ ∥x0 − x∗∥2

2η(T + 1)
+

ησ2

2
(2)

2. Let x̄ = 1
T+1 ∑T

k=0 xk with a decreasing η = ∥x0−x∗∥
σ
√

T+1
. Then after T steps, we obtain a

bound on the expected suboptimality

E[ f (x̄)]− f ∗ ≤ ∥x0 − x∗∥ σ√
T + 1

(3)

From the above theorem, it appears that the convergence rate for a fixed learning rate can be split
into two parts. In the first part, we see linear convergence to 0. In the second part, we see a term
containing the variance of the gradient independent from the number of iterates. This term will
not converge to 0. This means that SGD has linear convergence up to some tolerance after which
additional iterates make no further progress.

∥xk+1 − x∗∥ = ∥xk − x∗ − ηgk∥2 (4)

= ∥xk − x∗∥2 − ⟨xk − x∗, gk⟩+ η2 ∥gk∥2 (5)

E[∥xk+1 − x∗∥] = E[∥xk − x∗∥2]− ⟨xk − x∗,∇ f (xk)⟩+ η2E[∥gk∥2] (6)

With a fixed learning rate, the expected distance between the iterate and the optimizer remains lower
bounded by the variance at the given iterate. Since this variance component does not converge in the
standard stochastic gradient descent, the method may converge away from the optimizer. For this
reason, decreasing step sizes are generally required in order to reduce this variance component over
iterates. With a linearly decreasing step size, convergence is no longer hindered by the variance term,
but the rate of convergence is now 1√

t
instead of the 1

t that one would obtain in standard gradient
descent. Nonetheless, under the assumption of strong convexity and Lipschitz gradients, it is possible
to show that one can attain a convergence rate of 1

t Nemirovski et al. (2009) which is still worse than
the linear convergence rate of deterministic gradient descent in the same case.

Under the assumption that the method only has access to an unbiased measurement of the objective
function and its gradient, it turns out that these convergence rates are optimal Blair (1985); Nemirovski
et al. (2009). Nonetheless, additional assumptions, such as the fact that functions are sampled from
a finite dataset, allow us to show that faster convergence rates of stochastic gradient methods may
be possible while preserving iteration complexity. This motivates the need for methods that are
able to inherently reduce the estimator variance to enable more rapid convergence without linearly
decreasing step sizes.

In other words, we would like to have a stochastic gradient method in which

lim
xk−→x∗

E[∥gk∥2] = 0.

2



3 Variance Reduction

Rather than reducing our learning rate linearly with iterates, it would be more convenient to have
the variance of our gradients decay to 0 over iterations. To motivate the approaches that are utilized
to reduce variance, we will consider two random variables X and Z such that Cov(X, Z) > 0. We
define

X̂ = X− Z + E[Z].
Notice that by linearity of expectation

E[X̂] = E[X]

and
Var(X̂) = Var(X) + Var(Z)− 2 Cov(X, Z).

Therefore, we can use a Z that is highly correlated with our gradient estimator to reduce the variance
of stochastic gradient descent and enable larger step sizes.

3.1 Stochastic Average Gradient Method

The Stochastic Average Gradient Method Schmidt et al. (2013) was one of the first variance reduction
stochastic gradient method proposed, extending incremented aggregated gradients Blatt et al. (2007)
to the stochastic case. One way of implementing SAG is to maintain a table of i entries each of which
contains the last computed gradient of fi. We define the i-th entry at the k-th iteration as yk

i . At each
iteration, an index ik is selected uniformly at random from [1, n]. We define

yk
i =

{
∇ fi(xk) if i = ik
yk−1

i otherwise

The next iterate is therefore defined as

xk+1 ←− xk −
η

n

n

∑
i=1

yk
i .

Like the deterministic full gradient descent, this method utilizes gradients calculated with respect to
all functions. However, it only computes one gradient in any given iteration meaning that it continues
to preserve the iteration complexity of stochastic gradient descent.

In practice, a complete table of all gradients is unnecessary and only a few variables need to be stored.

Algorithm 1 Basic SAG with step size η

d← 0
yi ← 0 for i ∈ [1, n]
for k=0,1,... do

Sample i from {1, 2, ..., n}
d← d− yi +∇ fi(x)
yi ← ∇ fi(x)
x ← x− η

n d
end for

It is important to recognize that SAG’s gradient estimates are no longer unbiased. We can rewrite the
iterate step as

xk+1 ←− xk −
η

n
(∇ fi(xk)− (yk−1

i −
n

∑
i=1

yk−1
i )).

Let us define
X = ∇ fi(xk)

and

Z = yk−1
i −

n

∑
i=1

yk−1
i .
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It is evident that E[X] = fi(xk) and E[Z] ̸= 0. This means that E[X̂] ̸= E[X] for X̂ = X− Z. As a
consequence, our SAG estimates for the gradient are no longer unbiased.

However, since X and Y are correlated, the variance of our gradient estimate is greatly reduced. In
particular, note that as xk −→ x∗,

∇ fi(xk)− yk−1
i −→ 0

and
n

∑
i=1

yk−1
i −→ ∇ f (x∗) = 0.

It turns out that this variance reduction trick enables the use of constant step sizes and improves the
convergence rate from 1√

t
to 1

t in the general case and achieves linear convergence in the case of fi

strongly convex.

Assume that the gradients of fi are Lipschitz continuous with constant L. We define x̄k =
1
k ∑k

i=1 xi.

Theorem 2. With a constant step size of ηk =
1

16L , SAG iterations for k ≥ 1 satisfy:

E[ f (x̄k)]− f (x∗) ≤
32n

k
C0

where if y0
i = 0,

C0 = f (x0)− f (x∗) +
4L
n
∥x0 − x∗∥2 +

σ2

16L
,

and if y0
i = ∇ fi(x0)−∇ f (x0),

C0 =
3
2
( f (x0)− f (x∗)) +

4L
n
∥x0 − x∗∥2 .

If f is µ-strongly convex, we have that

E[ f (x̄k)]− f (x∗) ≤
(

1−min
{

µ

16L
,

1
8n

})k
C0.

Theorem 2 shows that in later iterations, SAG is able to obtain a much faster convergence rate than
SGD methods. However, notice that due to the dependence on n, convergence for small k can be
slower than that of SGD methods. In practice, one can initialize x0 using n iterations of SGD and set

y0
i = ∇ fi(x0)−∇ f (x0) to attain convergence rates of

√
n

k and ρk

n in the convex and strongly-convex
cases respectively.

3.2 Stochastic Variance Reduced Gradient Method

Instead of utilizing a sum of gradients calculated at various different points, the Stochastic Variance
Reduced Gradient Method Johnson and Zhang (2013) calculates the full gradient at a snapshot point
and the stochastic gradient at both the current iterate and the snapshot. In doing so, unlike SAG,
the SVRG is able to achieve variance reduction while retaining an unbiased gradient estimator. In
practice, there is some trade off with bias and variance wherein SVRG’s gradient estimates can retain
higher variance than SAG since they are unbiased.

In particular, consider the gradient estimator

gk = ∇ fi(xk)−∇ fi(x̃k) +∇ f (x̃k)

where i is sampled uniformly at random.

It is evident that this estimator is unbiased

E[∇ fi(xk)−∇ fi(x̃k) +∇ f (x̃k)] = ∇ f (xk).

However, for xk close to x̃k, assuming fi have Lipschitz-continuous gradients, ∇ fi(xk) and ∇ fi(x̃k)
should be correlated. If we define X = ∇ fi(xk) and Z = ∇ fi(x̃k), we can see that X̂ = X− Z +
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E[Z] will have reduced variance following our previous discussion. In total, this means that SVRGs
gradient estimates are unbiased gradient estimates with reduced variance.

In particular, we note that as x̃ −→ x∗,
∇ f (x̃) −→ 0.

This means that if ∇ fi(x̃k) −→ ∇ fi(x∗)

∇ fi(xk)−∇ fi(x̃k) +∇ f (x̃k) −→ ∇ fi(xk)−∇ fi(x∗) −→ 0.

Algorithm 2 SVRG with update frequency m and step size η

Intialize x̃0
for s=0,1,... do

x̃ ← x̃s−1
µ̃← ∇ f (x̃)
x0 = x̃
for t=0,1,...,m do

Sample i from {1, 2, ..., n}
xt ← xt−1 − η(∇ fi(xt−1)−∇ fi(x̃) + µ̃)

end for
x̃s ← xm

end for

Similar to SAG, this variance reduction trick allows for the use of constant step sizes and can improve
the convergence rate from 1√

t
to 1

t .

Theorem 3. Consider the SVRG algorithm. Assume that fi are convex and smooth and f is strongly
convex. Assume that m is large enough such that

α =
1

γη(1− 2Lη)m
+

2Lη

1− 2Lη
< 1

then we have geometric convergence of SVRG

E[ f (x̃s)]− f (x∗) ≤ αs( f (x̃0)− f (x∗))

Much like in SAG, we see geometric convergence for strongly convex functions, yielding considerably
faster convergence rates than SGD methods.

4 Acceleration

Recently, some papers have attempted to demonstrate that approaches analogous to Nesterov’s
momentum trick can be applied for stochastic gradient descent Frostig et al. (2015); Lin et al. (2015);
Shalev-Shwartz and Zhang (2014). However, many of these approaches either yield suboptimal
convergence rates or have practicality concerns with regard to storage or hyperparameter tuning. As
we will discuss in the next section, one such method, Katyusha Momentum Allen-Zhu (2017) is able
to tractably achieve optimal convergence.

4.1 Katyusha Momentum

Katyusha momentum presented a means of accelerating stochastic gradient descent with low storage
overhead to reach provably optimal convergence rates. The authors present two separate optimization
algorithms with similar underlying principles for the strongly-convex and general cases.

We modify the optimization problem from before such that

f (x) =
1
n

n

∑
i=1

fi(x) + ϕ(x)

In our discussion of the approach, we will refer to κ = L
σ where fi are L-Lipschitz and ϕ is σ-strongly

convex.
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For the strongly convex case, we will see that (n +
√

nκ) log( 1
ϵ ) SGD iterations are necessary for ϵ

convergence. For the general case, we will see that n log( 1
ϵ ) +

√
nL
ϵ SGD iterations are necessary

for ϵ convergence.

Much like SVRG, Katyusha momentum utilizes x̃ snapshots that are updated every m iterations.
∇̃k+1 is the gradient estimator defined in the same way as in SVRG. τ1 and τ2 represent two separate
momentum parameters. We define α = 1

3τ1L .

Algorithm 3 Katyusha for σ-Strongly Convex ϕ and L-Lipschitz Functions
m← 2n
τ2 ← 1

2 , τ1 ← min{
√

mσ
√

3L
,

1
2}, α← 1

3τ1L
y0 = z0 = x̃0 ← x0
for s = 0, ..., S− 1 do

µs ← ∇ f (x̃s)
for j = 0, ..., m− 1 do

k← (sm) + j
xk+1 ← τ1zk + τ2 x̃s + (1− τ1 − τ2)yk
Sample i from {1, 2, ..., n}
∇̃k+1 ← µs +∇ fi(xk+1)−∇ fi(x̃s)

zk+1 = arg minz(
1

2α ∥z− zk∥2 + ⟨∇̃k+1, z⟩+ ϕ(z))
yk+1 = arg minz(

3L
2 ∥y− xk+1∥2 + ⟨∇̃k+1, y⟩+ ϕ(y))

end for
x̃s+1 ← (∑m−1

j=1 (1 + ασ)j)−1 · (∑m−1
j=0 (1 + ασ)j · ysm+j+1)

end for

As seen above, Katyusha momentum defines the next iterate as a convex combination of three vectors.
The zk vector can be seen as a weighted sum of the previous gradients. In traditional Nesterov
acceleration, the next iterate can be defined as a convex combination of the vectors yk and zk where yk
represents the gradient step and zk represents the momentum term. At an intuitive level, the addition
of the third term ensures that xk does not move too far away from the snapshot x̃k. This contributes
in two ways. Firstly, the SVRG gradient estimator will more effectively reduce variance when the
gradient is more correlated with the gradient of the snapshot. As the xk move further away from x̃k,
the gradients at the snapshot may not be as correlated with the gradients at xk. Secondly, it can be
seen as a negative momentum term to counteract some momentum from early iterations that are no
longer contributing beneficially to convergence.

One can note that when τ2 = 0, the classical Nesterov Acceleration Method is obtained. For
τ1, τ2 = 0, Katyusha momentum reduces to SVRG. The authors found that both in theory τ1 =

min{
√

nσ
L , 0.5} and τ2 = 0.5 are optimal and in practice these parameters work well.

Theorem 4. If each of fi(x) is convex, L-smooth and ϕ(x) is strongly convex then Katyusha satisfies

E[ f (x̃s)]− f (x∗) ≤
{

O
(
(1 +

√
σ

3Lm )−Sm
)
· ( f (x0)− f (x∗)), if mσ

L ≤
3
4

O
(
(1.5)−S) · ( f (x0)− f (x∗)), if mσ

L > 3
4 .

This means that with m = O(n), Katyusha is able to obtain ϵ error in O((n +
√

nL
σ ) ·

log( f (x0)− f (x∗)
ϵ )) iterations.

The primary modification to Katyusha momentum in the general case is the dependence of τ1,s on the
index s. A decaying τ1 and α are also seen in the accelerated gradient methods in the non-strongly
convex case.
Theorem 5. If each of fi(x) is convex, L-smooth and ϕ(x) is strongly convex then our general
Katyusha algorithm satisfies

E[ f (x̃s)]− f (x∗) ≤ O

(
f (x0)− f (x∗)

S2 +
L ∥x0 − x∗∥2

mS2

)
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Algorithm 4 Katyusha for General Case
m← 2n
τ2 ← 1

2
y0 = z0 = x̃0 ← x0
for s = 0, ..., S− 1 do

τ1,s ← 2
s+4 , αs ← 1

3τ1,s L
µs ← ∇ f (x̃s)
for j = 0, ..., m− 1 do

k← (sm) + j
xk+1 ← τ1,szk + τ2 x̃s + (1− τ1,s − τ2)yk
Sample i from {1, 2, ..., n}
∇̃k+1 ← µs +∇ fi(xk+1)−∇ fi(x̃s)

zk+1 = arg minz(
1

2αs
∥z− zk∥2 + ⟨∇̃k+1, z⟩+ ϕ(z))

yk+1 = arg minz(
3L
2 ∥y− xk+1∥2 + ⟨∇̃k+1, y⟩+ ϕ(y))

end for
x̃s+1 ← 1

m ∑m
j=1 ysm+j

end for

This means that with m = O(n), Katyusha is able to obtain ϵ error in

O
(

n
√

f (x0)− f (x∗)
ϵ +

√
nL∥x0−x∗∥√

ϵ

)
iterations.
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